Next-generation DNA sequencing of HEXA: a step in the right direction for carrier screening

نویسندگان

  • Jodi D Hoffman
  • Valerie Greger
  • Erin T Strovel
  • Miriam G Blitzer
  • Mark A Umbarger
  • Caleb Kennedy
  • Brian Bishop
  • Patrick Saunders
  • Gregory J Porreca
  • Jaclyn Schienda
  • Jocelyn Davie
  • Stephanie Hallam
  • Charles Towne
چکیده

Tay-Sachs disease (TSD) is the prototype for ethnic-based carrier screening, with a carrier rate of ∼1/27 in Ashkenazi Jews and French Canadians. HexA enzyme analysis is the current gold standard for TSD carrier screening (detection rate ∼98%), but has technical limitations. We compared DNA analysis by next-generation DNA sequencing (NGS) plus an assay for the 7.6 kb deletion to enzyme analysis for TSD carrier screening using 74 samples collected from participants at a TSD family conference. Fifty-one of 74 participants had positive enzyme results (46 carriers, five late-onset Tay-Sachs [LOTS]), 16 had negative, and seven had inconclusive results. NGS + 7.6 kb del screening of HEXA found a pathogenic mutation, pseudoallele, or variant of unknown significance (VUS) in 100% of the enzyme-positive or obligate carrier/enzyme-inconclusive samples. NGS detected the B1 allele in two enzyme-negative obligate carriers. Our data indicate that NGS can be used as a TSD clinical carrier screening tool. We demonstrate that NGS can be superior in detecting TSD carriers compared to traditional enzyme and genotyping methodologies, which are limited by false-positive and false-negative results and ethnically focused, limited mutation panels, respectively, but is not ready for sole use due to lack of information regarding some VUS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strategies and Clinical Applications of Next Generation Sequencing

Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput se­quencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...

متن کامل

Strategies and Clinical Applications of Next Generation Sequencing

Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput se­quencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...

متن کامل

I-37: Establishing High Resolution Genomic Profiles of Single Cells Using Microarray and Next-Generation Sequencing Technologies

The nature and pace of genome mutation is largely unknown. Standard methods to investigate DNA-mutation rely on arraying or sequencing DNA from a population of cells, hence the genetic composition of individual cells is lost and de novo mutation in cell(s) is concealed within the bulk signal. We developed methods based on (SNP-) arraying and next-generation sequencing of single-cell whole-genom...

متن کامل

Implementation and Optimization of Annotation and Interpretation Step of Next-Generation Sequencing Data for Non-Syndromic Autosomal Recessive Hearing Loss

Introduction: The precision and time required for analysis of data in next-generation sequencing (NGS) depends on many factors including the tools utilized for alignment, variant calling, annotation and filtering of variants, personnel expertise in data analysis and interpretation, and computational capacity of the lab and its optimization is a challenging task.  Method: An application software...

متن کامل

Implementation and Optimization of Annotation and Interpretation Step of Next-Generation Sequencing Data for Non-Syndromic Autosomal Recessive Hearing Loss

Introduction: The precision and time required for analysis of data in next-generation sequencing (NGS) depends on many factors including the tools utilized for alignment, variant calling, annotation and filtering of variants, personnel expertise in data analysis and interpretation, and computational capacity of the lab and its optimization is a challenging task.  Method: An application software...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2013